keras seqeunce to sequence lstm inference step input shape error

i'm building a seq2seq model with keras based on this example: https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

When i try to load the saved model in jupyter notebook to test the results i get the following error:

ValueError: Layer decoder_lstm expects 1 inputs, but it received 3 input tensors. Input received: [Reshape{3}.0, InplaceDimShuffle{0,1}.0, InplaceDimShuffle{0,1}.0]

This is what my model looks like when i train it, no errors here.

latent_dim = 256
batch_size = 10
epochs = 1

encoder_inputs = Input(shape=(None, ))
encoder_embedding = Embedding(amount_encoder_tokens, latent_dim, name="encoder_embedding")(encoder_inputs)
encoder_LSTM1 = LSTM(latent_dim, return_sequences=True, name="encoder_lstm1")(encoder_embedding)
x, state_h, state_c = LSTM(latent_dim, return_state=True, name="encoder_lstm2")(encoder_LSTM1)
encoder_states = [state_h, state_c]

decoder_inputs = Input(batch_shape=(batch_size, max_headline_length))
decoder_embedding = Embedding(amount_decoder_tokens, latent_dim, 
name="decoder_embedding")(decoder_inputs)
decoder_LSTM = LSTM(latent_dim, return_sequences=True, stateful=True, 
name="decoder_lstm", initial_state=encoder_states)
decoder_outputs = decoder_LSTM(decoder_embedding) #, 
initial_state=encoder_states)

decoder_dense = Dense(amount_decoder_tokens, activation="softmax", 
name="decoder_dense")
decoder_outputs = decoder_dense(decoder_outputs)

model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer=RMSprop(lr=0.0001), loss='categorical_crossentropy')

Any help would be appreciated.